Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We realize a magneto-optical trap (MOT) of titanium (Ti) atoms, performing laser cooling on the 498 nm transition between the long-lived metastable state and the excited state. Without the addition of any repumping light, we observe MOTs of the three stable, bosonic isotopes, , and . Up to atoms are trapped at a maximum density of and at a temperature of . By measuring the decay of the MOT, we constrain the leakage branching ratio of the cooling transition ( ) and the two-body loss coefficient ( ). Our approach to laser cooling Ti can be applied to other transition metals, enabling a significant expansion of the elements that can be laser cooled. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract The generation of a register of highly coherent, but independent, qubits is a prerequisite to performing universal quantum computation. Here we introduce a qubit encoded in two nuclear spin states of a single 87 Sr atom and demonstrate coherence approaching the minute-scale within an assembled register of individually-controlled qubits. While other systems have shown impressive coherence times through some combination of shielding, careful trapping, global operations, and dynamical decoupling, we achieve comparable coherence times while individually driving multiple qubits in parallel. We highlight that even with simultaneous manipulation of multiple qubits within the register, we observe coherence in excess of 10 5 times the current length of the operations, with $${T}_{2}^{{{{{\mathrm{echo}}}}}}=\left(40\pm 7\right)$$ T 2 echo = 40 ± 7 seconds. We anticipate that nuclear spin qubits will combine readily with the technical advances that have led to larger arrays of individually trapped neutral atoms and high-fidelity entangling operations, thus accelerating the realization of intermediate-scale quantum information processors.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
